The generator matrix 1 0 1 1 1 X^2+X 1 1 X^3+X^2 1 1 X^3+X 1 1 X^3 1 1 X^3+X^2+X 1 1 X^2 1 1 X 1 1 0 1 1 X^2+X 1 1 1 1 X^3+X^2 X^3+X 1 1 1 1 1 1 1 1 X^3 X^3+X^2+X X^2 X X X 0 X X X^3+X^2 X X X X X^3 X^2 1 0 1 X+1 X^2+X X^2+1 1 X^3+X^2 X^3+X^2+X+1 1 X^3+X X^3+1 1 X^3 X^3+X+1 1 X^3+X^2+X X^3+X^2+1 1 X^2 X^2+X+1 1 X 1 1 0 X+1 1 X^2+X X^2+1 1 X^3+X^2 X^3+X^2+X+1 X^3+X X^3+1 1 1 X^3 X^3+X^2+X X^2 X X^3+X+1 X^3+X^2+1 X^2+X+1 1 1 1 1 1 0 X^2+X X X^3+X^2 X^3+X X X^3 X^2 X^3+X^2+X X X X 0 generates a code of length 61 over Z2[X]/(X^4) who´s minimum homogenous weight is 60. Homogenous weight enumerator: w(x)=1x^0+12x^60+216x^61+12x^62+3x^64+8x^65+4x^66 The gray image is a linear code over GF(2) with n=488, k=8 and d=240. This code was found by Heurico 1.16 in 0.078 seconds.